

Overview

We analyse the state of the art in articulated human pose estimation using a new large-scale benchmark dataset.

- Our **MPII Human Pose** benchmark includes more than **40,000** images systematically collected using an established taxonomy of human activities [1]. The collected images cover **410 human activities** in total.
- Our analysis is based on the **rich annotations** that include body pose, body part occlusion, torso and head viewpoint, and person activity.

• Dataset and **web-based evaluation toolkit** are available at **human-pose.mpi-inf.mpg.de**.

Related Datasets

Dataset	#training	#test	img. type
Full body pose datasets			
Parse [Ramanan, NIPS'06]	100	205	diverse
LSP [Johnson&Everingham, BMVC'10]	1,000	1,000	sports (8 types)
PASCAL Person Layout [Everingham et al., IJCV'10]	850	849	everyday
Sport [Wang et al., CVPR'11]	649	650	sports
UIUC people [Wang et al., CVPR'11]	346	247	sports (2 types)
LSP extended [Johnson&Everingham, CVPR'11]	10,000	-	sports (3 types)
FashionPose [Dantone et al., CVPR'13]	6,530	775	fashion blogs
J-HMDB [Jhuang et al., ICCV'13]	31,838	-	diverse (21 act.)
Upper body pose datasets			
Buffy Stickmen [Ferrari et al, CVPR'08]	472	276	TV show (Buffy)
ETHZ PASCAL Stickmen [Eichner&Ferrari, BMVC'09]	-	549	PASCAL VOC
Human Obj. Int. (HOI) [Yao&Fei-Fei, CVPR'10]	180	120	sports (6 types)
We Are Family [Eichner&Ferrari, ECCV'10]	350 imgs.	175 imgs.	group photos
Video Pose 2 [Sapp et al., CVPR'11]	766	519	TV show (Friends)
FLIC [Sapp&Taskar, CVPR'13]	6,543	1,016	feature movies
Sync. Activities [Eichner&Ferrari, PAMI'12]	-	357 imgs.	dance / aerobics
Armlets [Gkioxari et al., CVPR'13]	9,593	2,996	PASCAL VOC/Flickr
MPII Human Pose (this paper)	28,821	11,701	diverse (491 act.)

Visualization of the upper body pose variability. (a) color coding of the body parts, (b) annotations from the Armlets dataset [Gkioxari et al. CVPR'13], and (c) annotations from our MPII Human Pose dataset.

2D Human Pose Estimation: New Benchmark and State of the Art Analysis Mykhaylo Andriluka^{1,3}, Leonid Pishchulin¹, Peter Gehler² and Bernt Schiele¹ ¹Max Planck Institute for Informatics, ²Max Planck Institute for Intelligent Systems, ³Stanford University, Germany Germany USA

Randomly chosen activities and images from 18 top level categories of our MPII Human Pose dataset. One image per activity is shown. The full dataset is available at human-pose.mpi-inf.mpg.de.

Analysis of the state of the art

• Performance of the upper-body and full-body state-of-the-art approaches:

Setting	Torso	Upper	Lower	Upper	Fore-	Head	Upper	Full
		leg	leg	aliii	aim		Douy	Douy
Gkioxari et al. [2]	51.3	-	-	28.0	12.4	-	26.4	-
Sapp&Taskar [5]	51.3	-	-	27.4	16.3	-	27.8	-
Yang&Ramanan [6]	61.0	36.6	36.5	34.8	17.4	70.2	33.1	38.3
Pishchulin et al. [3]	63.8	39.6	37.3	39.0	26.8	70.7	39.1	42.3
Gkioxari et al. [2] + loc	65.1	-	-	33.7	14.9	-	32.4	-
Sapp&Taskar [5] + loc	65.1	-	-	32.6	19.2	-	33.7	-
Yang&Ramanan [6] + loc	67.2	39.7	39.4	37.4	18.6	75.7	35.8	41.4
Pishchulin et al. $[3] + loc$	66.6	40.5	38.2	40.4	27.7	74.5	40.6	43.9
Yang&Ramanan [6] retrained	69.3	39.5	38.8	43.4	27.7	74.6	42.3	44.7
Pishchulin et al. [3] retrained	68.4	42.7	42.8	42.0	29.2	76.3	42.1	46.1

- \Rightarrow PS and FMP models improve significantly after retraining.
- \Rightarrow Full-body approaches perform better than upper-body ones.
- We define complexity measures with respect to *body* pose, viewpoint of the torso, body part length, occlusion, and *truncation*, and analyze sensitivity of the state-of-the-art approaches to each of these factors:

Complexity measures: Occlusion: number of occluded body parts $\mathbf{m}_{occ}(L) = \sum_{i=1}^{N} \rho_i$ Part length: average deviation from the nean part length $m_f(L) = \sum_{i=1}^{N} |d(l_i) - m_i| / m_i$ Pose: deviation from the mean pose represented via PS prior distribution $\mathbf{m}_{pose}(L) = \prod_{(i,j)\in E} p_{ps}(l_i|l_j)$

VP torso: deviation of the torso from the frontal viewpoint $m_{\nu}(L) = \sum_{i=1}^{3} \alpha_i$

Truncation: number of truncated body parts $\mathbf{m}_t(L) = \sum_{i=1}^N \boldsymbol{\tau}_i$

• Detailed performance analysis for activity, viewpoint and body poses types:

 \Rightarrow Striking performance differences for all approaches across activities and viewpoints even after retraining. \Rightarrow Results on sports activities are the best, even though they have been previously considered among the most difficult for pose estimation. \Rightarrow Detailed analysis reveals differences between FMP and PS, even though overall performance is comparable.

 \Rightarrow Body pose has a significantly more profound effect on performance than occlusion and truncation.

Performance (mPCP) for different pose types.

Activity recognition

We evaluate the performance of the state-of-the-art activity recognition methods on our benchmark in [4].

(a) number of examples per activity. (b) Comparison of the activity recognition performance of [Wang et al., ICCV'13] (DT) and variants of posed-based approach of [Jhuang et al., ICCV'13]. The plot shows performance (mAP) as a function of the number of activities. Activities are sorted by the number of training examples.

Dense trajectories (DT) PS multi-pose (PS-M) PS-M + DTPS-M filter DT

Dense trajectories (DT) PS multi-pose (PS-M) PS-M + DTPS-M filter DT

Activity recognition results (mAP) on the 15 largest classes.

References

- update of codes and MET values. MSSE'11.
- discriminative armlet classifiers. In CVPR'13
- pose based features. *arXiv:1406.1881*, 2014.
- *CVPR'13*.
- PAMI'13.

MAX-PLANCK-GESELLSCHAF

yoga, power	bicycling, mountain	skiing, downhil	cooking or l food prep.	skate- boarding	rope skipping	softball, general	forestry
10.6 18.3 19.6 16.1	14.5 34.0 40.7 20.4	51.9 27.3 32.9 52.2	0.5 2.6 2.2 0.8	11.4 17.2 19.5 13.5	36.0 90.5 88.7 55.7	12.7 3.0 3.9 4.2	8.4 5.2 7.2 10.6
carpentry general	, bicycling, racing	golf	rock climbing	ballet, modern	aerobic step	resistance training	total
carpentry general 5.5 3.4 5.0 6.1	y, bicycling, racing 5.5 8.6 12.1 15.5	golf 33.0 47.9 51.9 15.9	rock climbing 41.5 4.7 14.4 38.6	ballet, modern 12.7 22.9 23.7 7.1	aerobic step 24.5 10.4 17.1 25.8	resistance training 16.5 7.2 14.4 9.6	total 19.0 20.2 23.5 19.5

[1] B. Ainsworth, W. Haskell, S. Herrmann, N. Meckes, D. Bassett, C. Tudor-Locke, J. Greer, J. Vezina, M. Whitt-Glover, and A. Leon. 2011 compendium of physical activities: a second

[2] G. Gkioxari, P. Arbelaez, L. Bourdev, and J. Malik. Articulated pose estimation using

[3] L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele. Strong appearance and expressive spatial models for human pose estimation. In ICCV'13.

[4] L. Pishchulin, M. Andriluka, and B. Schiele. Fine-grained activity recognition with holistic and

[5] B. Sapp and B. Taskar. Multimodal decomposable models for human pose estimation. In

[6] Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts.